If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+5b-35+3b=180
We move all terms to the left:
b^2+5b-35+3b-(180)=0
We add all the numbers together, and all the variables
b^2+8b-215=0
a = 1; b = 8; c = -215;
Δ = b2-4ac
Δ = 82-4·1·(-215)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{231}}{2*1}=\frac{-8-2\sqrt{231}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{231}}{2*1}=\frac{-8+2\sqrt{231}}{2} $
| 5(3c-1)-2=13c+7 | | x^2+3x−23=5 | | x+8(6x-5)2x-3=180 | | 4d-(-2)=18 | | 10=5x+5x+10 | | 7x-66=11x+22 | | x+8(6x-52x-3=180 | | 15=1}{2}+{3}{2}x21+23x+10 | | 11=2u/3+7 | | 63=15r-6(7-r) | | 6x-8-5x+4=30 | | 3w-7=114 | | (x-1)(x+3)=17 | | 3•x-4=36 | | -9(z+2)+5(3z-7)=5(z-6)+14 | | -(x+8)-2(-2x+3)=2(2x+7)-3 | | 2x+1=4=3x+2 | | |7x-5|=17 | | 6a−15+10a=1 | | 14p-13p+1=6 | | 6+(25-5)÷2=p | | -13+2=-3(9x-5) | | 2/3/y=14 | | 4x+4x=9x-9 | | 11/12b=32= | | 8(x-3)=5(2x-4) | | 1/3=6x-1 | | 7x-5-5x+2=0 | | 15n+3=93 | | -3=x/7+2 | | 8h=(-72) | | a^2+4a-40=0 |